Show simple item record

dc.contributor.authorHamada, Mitsuruen_US
dc.date.accessioned2018-10-30T07:06:42Z
dc.date.available2018-10-30T07:06:42Z
dc.date.issued2014
dc.identifier.otherHPU4160196en_US
dc.identifier.urihttp://lib.pyu.edu.vn/handle/123456789/2115
dc.description.abstractFor any pair of three-dimensional real unit vectorsˆ mandˆ n with |ˆ mT ˆ n|<1 and any rotationU,letNˆ m,ˆ n (U) denote the least value of a positive integerksuch thatUcan be decomposed into a product of krotations about either ˆ morˆ n. This work gives the number Nˆ m,ˆ n (U) as a function ofU. Here, a rotation means an element D of the special orthogonal group SO(3) or an element of the special unitary group SU(2) that corresponds to D. Decompositions of Uattaining the minimum number Nˆ m,ˆ n (U) are also given explicitly.en_US
dc.language.isoenen_US
dc.publisherThe Royal Societyen_US
dc.subjectApplied mathematicsen_US
dc.subjectComputationalen_US
dc.subjectMathematicsen_US
dc.subjectQuantum computingen_US
dc.subjectSU(2)en_US
dc.subjectSO(3)en_US
dc.subjectRotatien_US
dc.titleThe minimum number of rotations about two axes for constructing an arbitrarily fixed rotationen_US
dc.typeBooken_US
dc.size485KBen_US
dc.departmentEducationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record